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Exact Analytical Formulas for the Distribution Functions 
of Charged Hard Spheres in the 
Mean Spherical Approximation 
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Exact analytical expressions are derived for the electrostatic part of the 
mean spherical approximation (MSA) radial distribution functions (RDFs) 
for a system of charged hard spheres. These expressions are valid for all 
distances. In addition, it is shown that these same expressions arise in the 
MSA description of the charge profile of charged hard spheres near a 
charged hard wall. We also derive analytical expressions for the non- 
electrostatic part of the profile in this case, valid for z ~< 5~r, and discuss a 
numerical method for obtaining results for z > 5a. Some simple approxi- 
mate expressions are also considered. 

KEY WORDS: Mean spherical approximation; charged hard spheres; 
electrolyte solution; electrified interface; electric double layer. 

1. I N T R O D U C T I O N  

Charged  ha rd  spheres are a useful and  i m p o r t a n t  model  bo th  for  e lectrolyte  
solut ions  and  for  mol ten  salts. Af te r  the classic work  o f  Debye  and Hiickel ,  m 
which is val id only for  low concentra t ions ,  there  was little theoret ical  progress  
unti l  the numerica l  solut ion o f  the hypernet ted  chain a pp rox ima t ion  by  
Rasa i ah  and  F r i e d m a n  ~ and the analyt ica l  solut ion o f  the mean  spherical  
app rox ima t ion  (MSA)  for  charged ha rd  spheres o f  equal  d iameter  by Wais-  
m a n  and Lebowi tz  ~3~ and for  charged ha rd  spheres of  unequal  d iameter  by  

Blum.~ *) 
Our  interest  in this paper  is in the W a i s m a n - L e b o w i t z  solut ion o f  the 
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MSA for charged hard spheres of equal diameter. Although Waisman and 
Lebowitz obtained an analytical expression for the Laplace transform of the 
electrostatic part of the radial distribution functions (RDFs) of this system, 
until recently analytic expressions for the RDFs themselves have not been 
available. Recently Outhwaite and Hutson (5~ and Hirata and Arakawa (6~ have 
obtained explicit expressions for these in the interval for r ~< 6cr, where a is 
the hardsphere diameter. In this paper we obtain an analytical expression, 
valid for any distance, for the electrostatic part of the MSA RDFs for this 
system. In addition, we examine an approximation to this result due to 
Blum and Hoye (7~ for these RDFs, and propose an extension. 

Finally, we show that the same function arises in the MSA treatment of 
charged hard spheres near a charged hard wall. Thus, the results given here 
also provide a useful description of the charge profile of an electrified inter- 
face. We also give analytical expressions for the nonelectrostatic part of the 
profile in this case, valid in the interval z ~< 5g. 

2. M S A  FOR CHARGED HARD SPHERES 

For simplicity, consider a model symmetric bulk electrolyte or molten 
salt consisting of equal numbers of hard spheres of diameter ~ with charges 
+ ze, respectively. It is convenient to introduce the functions 

hs(r) = [hll(r) + h~2(r)]/2 (1) 

and 

hD(r) = [h~l(r) - h~(r ) ] /2  (2) 

where h~j(r) = g,j(r) - 1 and g~j(r) is the radial distribution function for 
charged hard spheres of species i and j. For this system the MSA is 

hs(r)  = - 1 ,  r < cr 
(3) 

cs(r) -- 0 r > ~r 

hD(r) = O, r < ~r 
(4) 

co(r)  = - q / r ,  r > a 

where q = fiz2e2/E, ~ is the dielectric constant of the solvent, and cs(r) = 
[ell(r) + c12(r)]/2 and cD(r) = [ell(r) - c12(r)]/2 are related to hs(r) and 
ho(r)  through the Ornstein-Zernike equations 

+ p f hs(rz3)cs(r2a)drs (5) hs(rlz)  cs(rl2) 

co(r12) + p ~ hD(r13)cD(r23) dr8 (6) hD(r12) 
J 
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where p = N~ V is the density of N atoms in a volume V. Equations (3) and 
(5) constitute the Percus-Yevick approximation (8) for uncharged hard 
spheres, which has been solved by Wertheim (9) and Thiele, <1~ who obtained 
analytical expressions for cs(r) and the Laplace transform ofgs(r) = hs(r) + 
1. Smith and Henderson m) have inverted this Laplace transform analytically 
to obtain expressions for gs(r) for r ~< 5z. 

Waisman and Lebowitz (3) have solved Eqs. (4) and (6) and have shown 
that 

hD(~) = --[q/(1 + Pa )2 ] f (~ -  1)/~: (7) 

where ~ = r/a, and F is related to the Debye screening length ~ = 
(4~rpz2e2fl/e) ~1~ by 

2Pa = (1 + 2 ~ )  ~2 - 1 (8) 

Waisman and Lebowitz did not obtainf(x). However, they did show that the 
Laplace transform off (x)  is given by 

S 

~e[fl(s ) = e-SXf(x) dx = s2 + 2(ro)s + 2 ( r&(1  - e - 9  (9) 

Hirata and Arakawa (6~ have inverted Eq. (9) to obtain explicit expressions for 
f ( x )  for 0 ~< x ~ 3e. They used a zonal expansion, similar to that used by 
Wertheim (9~ and Smith and Henderson m) for gs(r), and expanded 

s ~" se -~"-1~ 
[2(r~)~] . - ~  

s = + 2(r~)s + 2(P&(1 - e -~) = ,=IZ' [(s + r~)~ + (r~)~]- 

(10) 
Thus 

f ( x )  = ~ gn(x - n + 1)u(x - n + 1) (11) 
n = l  

where u(y) is the Heaviside step function, and 

g~(y) = [2(p~)2]~_ l fs  1 [.[ s ] }  (s + r~)~ + (r~)2] . (y) 

=[2(I,a)2]._le_(r..~{Lp_l[ s - I ' ~  ] }  
Is ~ + (r~)~l" (y) (12) 

For n small, the inverse transform may be found in almost any table of 
Laplace transforms or may easily be calculated directly. Hirata and Arakawa (6) 
obtained g~(y) for n ~< 3. 

The expressions of Hirata and Arakawa, which give hD(r) for z ~< r ~< 3a, 
are most useful for high concentrations where electrical screening is high and 
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hD(r) tends to zero rapidly. At lower concentrations where hD(r) tends to zero 
slowly some extension of the Hirata-Arakawa expressions to larger r must be 
obtained. 

Fortunately, it is possible to invert Eq. (12) and obtain general expres- 
sions for g , (y )  for any n. The keys to these general expressions are the 
relations 

~[y~Jv(~)](s) = ~ r v + [s ~ + (r~)21(2~+1~,~ 

~ e [ s + % ( ~ ) ] ( s )  = - ~  r v + ts 2 + ( r ~ ) ~ l ~ . l ~  ~ (14) 

where ~ = (I'~)y, and P(a) is the gamma function (which is not to be confused 
with the parameter P). Setting v = n -  �89 and introducing the spherical 
Bessel functions 

j , (x )  = (rr/2x)l/2J~ + lt2(x) (15) 

we have 

[2(F~r)21 "-* [s 2 + (p~)=], - 5r (n - 1)! [j,-2(/*) - j , - l ( / * ) ]  (s) (16) 

Hence 

/an 
g , (y )  = e-"  ~(n [A-=(t~) - A-,(t*)] (17) 

Equation (17) is valid for all n. However, if one desires, j_,(t ,)  can be avoided 
by treating n = 1 as a separate case. Thus 

g~(y) = e-U(cos tz - sin t~) (18) 

Equation (17) is convenient for numerical calculations. We have obtained 
g , (y )  for n ~< 100 without difficulty. 

Equation (17) reduces to the results of Hirata and Arakawa for n ~< 3 
but is much more simple and elegant. Hirata and Arakawa give their results 
in terms of trigonometric functions, and as a result the simplicity of Eq. 
(17) is lost. Outhwaite and Hutson ~5~ have also obtained a general result for 
g,(y) .  However, like that of Hirata and Arakawa, their result is given in 
terms of trigonometric functions so that the simplicity and elegance of (17) 
is lost. Their result is not explicit, as is (17), but involves a complex set of 
recursion formulas among the coefficients of the sines and cosines. As a 
result, explicit results are obtained only for n < 5. 

Blum and Hoye (v~ have suggested that at low concentrations, a useful 
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approximation to f(x) may be obtained by neglecting 2I'2(1 - e -*') in Eq. 
(9), so that 

s = 1/(s + 2I'e) (19) 

and 

f(x) = e -2(rr (20) 

An approximation which is closer to the exact MSA result can be obtained by 
expanding the exponential in Eq. (9) to give 

s 1 
= - (21) s s 2 + s2P~(1 + P~) s + K~ 

Thus, 
f(x) = e -c~>x (22) 

Equations (20) and (22) have the correct contact value. Both reduce to 
the Debye-Hiickel result when i~a--~ 0. However, Eq. (22) is valid to order 
(Pcr) 2 and so has a wider range of usefulness than Eq. (20), which is valid only 
to order Fa. Equation (22) gives the correct MSA thermodynamics if the 
energy equation is used. Although Eq. (22) satisfies charge neutrality only to 
order (Fg) 2, the degree to which it fails to satisfy charge neutrality is bounded 
as Pa--> 0% whereas the failure of Eq. (20) to satisfy charge neutrality is 
unbounded. 

If  Eqs. (11), (20), and (22) are compared, it is found that for r ~ ~, Eq. 
(20) is a better approximation than Eq. (22). However, for larger r, Eq. (22) 
becomes the more accurate approximation. Even for P small, K rather than P 
is the better measure of the decay of f(x). Equation (22) is overall more 
accurate than Eq. (20). At very large r, neither Eq. (20) nor (22) shows the 
oscillations about zero that are shown by the exact MSA result. However, 
Eq. (22) gives the more accurate magnitudes. 

Blum (z2~ has used the results of this paper to obtain the RDFs of charged 
hard spheres of unequal diameter. Thus Eq. (11) is of value in treatments of 
asymmetric electrolytes also. 

As we shall see below, Eq. (11) also arises in the theory of charged hard 
spheres near a charged electrode. 

3. M S A  FOR AN ELECTRIFIED INTERFACE 

Recently, Henderson, Abraham, and Barker (1*~ (HAB) have modified the 
Ornstein-Zernike equation to describe density and charge profiles near 
smooth, solid walls. Subsequently, Blum (14~ has solved the HAB equation, 
using the MSA, for the case of charged hard spheres near a charged wall. For 
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the especially simple case of a model symmetric electrolyte (hard spheres of 
equal diameter and charge), Blum obtains the profile 

gw,(z) = gws(Z) + (~ez~E/K)f(z) (23) 

where gw~(Z) has been normalized so that gw~(Z)-+ 1 as z--+ ~ ;  z~e is the 
charge of species i; E/&r is the charge density on the wall; f (z)  is given by 
Eq. (11); z is the normal distance for the ion species i from the wall; and 
gws(Z) is the profile for hard spheres near a hard wall, which has been 
calculated by HAB. 

Equations (22) and (23) satisfy the charge neutrality condition 

plz,[e hwD(Z) dz = E/4rr (24) 

where hwD(Z) = [gw~(Z) -- gw2(Z)]/2, exactly, whereas Eq. (20) fails to satisfy 
Eq. (24). 

3.1,  Exact  M S A  R e s u l t s  fo r  gws fo r  z ~< 5a 

HAB have expressed gws(Z) = [gwl(Z) + gw2(Z)]/2 as an integral over 
gs(r). If  the analytical results of Smith and Henderson (11~ are substituted into 
the HAB result, analytical expressions for gws(Z) can be obtained. These 
same expressions can also be obtained directly from the Laplace transform 
of gvcso Lebowitz (~5~ has shown that the Laplace transform of gws(Z) is 

where 

(1 + 2~)s2e s (25) 
s = 12vL(s) + e~S(s) 

L(s) = (1 + ~q)s + 1 + 2~7 (26) 

S(s) = (1 - ~7)2s 8 + 6~/(1 - r/)s 2 + 18~s - 127(1 + 27/) (27) 

and ~7 = ~rP~r3/6. Following our earlier treatment ~11) of the analogous Percus- 
Yevick (PY) hard-sphere result, (25) may be expanded to give 

5e[g(z)](s) = (1 + 2~7)s 2 ~ ( -  12~)"-iL"-~(s)S-"(s) exp[- (n  - 1)s] 
n = 1  

yielding the zonal expansion 

g(z) = ~ g.*(z - n + 1)u(z  - n + 1) 
n = l  

(28)  

(29) 
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where 

(1 + 2~)( -12~)  '~-~ ,~  d "-~ g~*(y) = ~ -~ ~ ,=6/' ~-',,lim ~ [(t - t,)~t~L~-~(t)S-~(t)e ~] 

(30) 

The summat ion in (30) is over the zeros t~ (i = 0, 1, 2) o f  S(t),  given in our  
earlier paperJ  ~ 

Equat ion (30) becomes, after some manipulation,  

g , ( y )  = (1 + 2~) ( -12~)  ~-~ exp(t~y) ~ Y~-~-~/~L (31) 
n -  f ~=o ~=o 

where 

r s=0 s 

A.~(t) = [t~L~- ~(t)] ~ 

I \-YOY(O / J 

and the superscript (k) denotes the k th  derivative. 
The results for n ~< 5 are as follows: 

A~o(t) = t~LY-~(t), B~o(t) = [S~(t)] -~ 

(32) 

(33) 

(34) 

(35) 

A21(t) = t(2L + tL1), B21(t) = -$2/S~ 3 (36) 

A3~(t) = 2tL(L + tL~), Ba~(t) = -3S2/2S~ ~ 

A3~(t) = 2(L + tL1) 2 + 2tLL~, B32(t) = (3S22 - S~S3)/SI 5 (37) 

A~( t )  = tL2(2L + 3tL~), B4~(t) = -2S2/S~ 5 

A4~(t) = L(ZL + 3tL~)(L + 2tL~) + 5tL2LI 

B42(t) = (15S22 - 4S~$3)/3S16 (38) 

A4~(t) = 6Ll(3L 2 + 6tL~L + t2L~ 2) 

B ~ ( t )  = 5 s ~ ( 2 s l s 3  - 3s~)/s~ 7 

As,(t) = 2tL3(L + 2tL~), Bs~(t) = -5S2/2S~ 6 

A52(t) = 2L2(L 2 + 8tLL1 + 6t2Lz =) 

B52(t) = 5(9S22 - 2S~Sa)/6S, 7 

A6a(t) = 24LaL(L 2 + 3tLL, + t2L~ 9) (39) 

B53(t) = 15S2(-7S2 = + 4S~$3)/4S~ 8 

As~(t) = 24L12(6L 2 + 8tLL1 + t2L~ 2) 

Bs~(t) = 5(2S~2S32 - 21SIS2~S~ + 21S~)/S~ ~ 
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Also 

L = L( t ) ,  L~ = L ' ( t ) ,  S~ = S ' ( t ) ,  $2 = S" ( t ) ,  Ss = S" ( t )  

(4O) 
Equations (31)-(40) are easily programmed on a computer,  similarly to 

our  previous PY hard-sphere results. For  completeness, we remark here that  
these previous results can be extended to the shell 5or <~ r ~< 6~ using the 
above expressions. Thus, we have 

2 4 

xg~Z(x)  = ~o ~ exp[t~(x -- n)] ~ (x  -- n)4-~er(t,) (41) 
i = 0  r = 0  

where, using the same notat ion as in Eqs. (35)-(40), q~ = 864~ 4, 

Q o ( t )  -- tL ~, Q ~ ( t )  : L~(L + 5tL~), C ~ ( t )  = IOL~L~(L + 2tL~) 

C~(t)  = 60L~LI~(I~ + tL~), C~(t)  = 1201~L~(2I~ + tLO (42) 

3.2. Numerical Extrapolation Past 5a for gws(Z) 

Values of  gws(Z) for  z >/ 5~ may be determined numerically f rom the 
relation, (I3~ valid for  z >1 1, 

fo 1 fz+~ 
h(z) = 27rp tc( t )  dt _, h(s)  ds (43) 

where h(z) = gws(z)  - 1 and c( t )  is the bulk fluid direct correlation function, 
given by <9'~~ 

c( t )  = ~ + t~t + ~,t 3 (44) 

where 

= - ( 1  + 2,/)2/(1 - -0) 2 

/~ ___ 67(1 + ,//2)~i(1 _ -0)4 (45) 

~, = - ~2~q(1 + 2'0)2/(1 - -0)4 

Interchanging the order of  integration in (43) and performing the inner 
integral yields 

/ , z + l  

h(z) = 2rrpJ~_ 1 h( s ) f ( z ,  s)  ds (46) 

where 

f ( z ,  s )  = ~ [ 1  - ( z  - s)  2] + ~ [ 1  - Iz - sl  3] + ~ [ 1  - (z  - s)~] 

(47) 
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The integral in (46) is then approximated by a quadrature rule. Using equally 
spaced abscissas with weights {W j} and setting zk = kh, sk = kh, fe~ = 
f(z~, sO, h = 1/N, we find that Eq. (46) becomes 

k + N  

hk = 2zrp ~ h,A, (48) 
i = t c - N  

We see that h~+ N is determined from the values (hk+N_l, hk+N-2 .... , h~-2N). 

Changing variables and solving for this unknown quantity yields 

[ h ~ - N ~ - ~  ) /  
= ~ W~fk-N,, Wkfkk (49) hk \ 2rrp ~=~-2N 

The above procedure may also be used to determine the bulk PY hard- 
sphere values. Perram (16) has recently devised a numerical scheme related to 
the above to determine these hard-sphere values. His technique is based on 
use of Baxter's (17) modified form of the Ornstein-Zernike equation. We 
emphasize the fact that our technique may be applied directly to the usual 
unmodified form of the Ornstein-Zernike equation in this case, using the 
same procedure as we describe above. 

4. S U M M A R Y  

Exact MSA analytic expressions, valid for all distances, have been 
obtained for the electrostatic part of the radial distribution functions of a 
system of charged hard spheres. To the best of the authors' knowledge, this is 
the first time that an explicit exact analytical expression for an RDF, valid 
for all distances, has been obtained for any nontrivial approximation. These 
same expressions also describe the MSA charge profile of a system of charged 
hard spheres near a charged wall. In addition, two simple approximations to 
these expressions have been examined. 

We have also obtained analytical expressions for the nonelectrostatic 
part of the profile of the latter system valid for r ~< 5or, and have discussed a 
numerical means of obtaining such results past r = 5~. 
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